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Abstract

In this research work, the pattern of spatial cluster had been identified for torrential rainfall data 
within the context of Peninsular Malaysia, which experiences heavy pour annually. Hence, a robust 
Principal Component Analysis (PCA) technique was employed in this study in order to address problem 
related to non-balance cluster(s) across patterns of rainfall stemming from skewed rainfall data. 
To analyze the observations made, Tukey’s biweight correlation was applied. For PCA components 
extraction, the optimum breakdown point was determined based on the proposed method. In order 
to strike a balance for extraction of number of components, as well as to hinder insignificant spatial 
scale or low-frequency variation, the simulation data recorded a breakdown point at 70% cumulative 
percentage of variance. The study outcomes revealed that the robust PCA gave better enhancement 
than the Pearson-based PCA did for cluster average number and quality. The findings indicate 
that ten rainfall patterns obtained are quite definite and clearly display the dominant role extended  
by the complex topography and exchange monsoons of the peninsular.

      
Keywords: Principal Component Analysis (PCA), robust PCA, Tukey’s biweight correlation, Pearson 
Correlation, K-means Cluster Analysis

*e-mail: shazlyn@fsmt.upsi.edu.my

DOI: 10.15244/pjoes/130677 ONLINE PUBLICATION DATE: 2021-04-08 



Shaharudin S.M., et al.3222

Introduction

Continuous torrential rainfall in Malaysia may pose 
as a calamity threat, such as the worst flood event that 
hit Kelantan on 28th December 2014 [1]. As a result, 
Malaysian meteorologists assess patterns of rainfall 
by emphasizing on heavy pour. The outcomes serve 
as a guide for devising effective actions and viable 
precautions to prevent flood.

Studies pertaining to spatial rainfall patterns within 
the hydrology domain have typically applied two 
techniques; regression and clustering-based modelling. 
Some research work that has employed the regression 
approach [2-6] had characterized the patterns of rainfall 
distribution. This approach particularly detects trends 
than describes the regional attributes of the rainfall 
pattern. The outcomes of this regression approach can 
be used for forecasting purposes. On the other hand, 
the clustering approach determines both temporal and 
spatial rainfall patterns to describe the attributes of 
regional data, thus implying highly-structured rainfall 
patterns [7]. This method is a viable statistical tool for 
grouping of regions, as well as to identify periods of 
rainfall events in regions.

The standard clustering approach to detect patterns 
of spatial rainfall is inapt for tropical climate that 
receives plenty of rainfall in a year. The extended 
observation period accumulates a massive dataset with 
intricate, redundant, and irrelevant data, thus giving 
inaccurate results. Despite the wet and dry seasons, 
rainfall in tropical regions does not vary significantly 

when compared to regions with four seasons. Besides, 
noise present in huge rainfall datasets is bound to cause 
errors. Hence, identifying cluster pattern from a huge 
rainfall dataset is indeed challenging. 

A technique of robust PCA is proposed to 
address the above mentioned problem. First, Tukey’s 
biweight correlation was implemented in robust PCA 
for measuring scale and location can down-weigh 
observations distant from data centre and has resistance 
against outlying observations due to the features of 
the tool [8-9]. Second, as breakdown point is integral 
for identifying the optimum PCA components to 
be extracted, a new breakdown set is prescribed for 
comparison with the amount of extracted components 
so as to strike a balance for extraction of integral 
components. 

Pearson-based PCA performance was compared 
with that of the proposed PCA based on Tukey’s 
biweight using simulated dataset matrices that reflected 
the real rainfall dataset. This comparison identified the 
spatial cluster pattern for heavy rainfall recorded in 
Peninsular Malaysia.

Materials and Methods

Study Area 

Rainfall data (measured using bucket rain gauge) 
recorded in 75 stations across Peninsular Malaysia were 
retrieved from Jabatan Pengairan dan Saliran (JPS) as 

Fig 1. Rainfall stations across the main torrential centres located in Peninsular Malaysia.
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shown in Fig. 1. This dataset, which is without missing 
data and consisted of 903,375 daily measurements from 
1975 to 2007 (12,045 days, excluding 8 leap days), had 
been deemed sufficient to detect patterns of torrential 
rainfall.

Since the focus of this present study is on torrential 
rainfall, a set of criteria was prepared to establish a 
threshold and to distinguish torrential rainfall across 
selected regions from the rest. As a result, it was 
decided that 60 mm/day as the threshold for torrential 
rainfall for the context of this study [10]. Filtering 
the data using the criteria for 2% of the total stations 
yielded 15 stations and 250 days, which had been 
adequately dense for determining spatial dissemination 
across regional scale [11].

Principal Component Analysis

PCA refers to a commonly used statistical 
measuring instrument for reduction of data across vast 
domains, including hydrology, image compression, and 
climatology. The PCA is typically applied to minimize 
the amount of variables into smaller component 
groups while concurrently retaining essential data. 
Here, principal components (linearly uncorrelated 
variables) are yielded from conversion of observed 
probable correlated variables. According to [12-13], this 
particular technique has been reckoned as effective to 
detect data with high dimensionality. 

The original data variation is essential in identifying 
the initial principal component. The subsequent 
component(s) reflect the remainder uncorrelated 
variation with prior component(s). Stemming from 
data matrix, correlation matrix (covariance) has a vital 
function in PCA to determine both eigenvectors and 
eigenvalues in identifying components that are related 
to represent data variations [10]. The following presents 
the correlation coefficient of Pearson for two observed 
vectors:  

            (1)

...where X– i and X– j denote vector mean values, while Xi  
and XJ  are observed vectors in matrix data, X, along 
with n observations. According to [10], the threshold 
of eigenvalues for a huge dataset to extract components 
is 70% of total variance. Minimized matrix refers to 
the eigenvector loading component matrix that reflects 
a new set of variables with original variables being 
transformed linearly, which maximizes variance at new 
axes. 

The Pearson-based PCA has been commonly 
applied for Eigen analysis in order to yield components 
mostly linked with data variation. Nevertheless, this 
method has been proven sensitive towards data without 
Gaussian distribution, along with observations that are 
skewed (e.g., outlying values). According to [14-15], 

climate-related data, particularly rainfall data, have 
distributions that are skewed towards positive values 
that are high. As Pearson approach provides weights 
that are equal for dataset observation, this technique 
is not robust towards outliers. Therefore, this Pearson-
based PCA method can influence cluster partitions and 
cause cluster imbalance within high-dimensional space. 

In order to address the above mentioned issue, 
Tukey’s biweight robust correlation was employed for 
identifying rainfall pattern in Peninsular Malaysia. This 
is due to the fact that the proposed technique has better 
resistance against outlying values by evaluating every 
observation and down-weighing those distant from data 
centre.

PCA Based Tukey’s Biweight Correlation

Tukey’s biweight correlation was initially proposed 
by [16] to analyze microarray gene expression data. 
In general, the method consists of a basic algorithm 
and several variation of the algorithm to further fine-
tune its correlation measure. This correlation measure 
is based on Tukey’s biweight and can be used both in 
clustering and gene network algorithm. The entries in 
the data of the applied method represent the sums of the 
contributions in measures of similarity in correlation 
approach. The Turkey’s biweight is one of the family of 
M-estimators are used to estimate location and scatter.  
This approach works iteratively using a weight function 
that makes it more resistant to outlying values, where 
it down weights those that lies far from the center of 
the data. Another important part in Tukey’s biweight 
correlation is a breakdown point. According to the 
study, the breakdown point is used in measuring their 
resistance to outlying data values [17]. However, in PCA 
based Tukey’s biweight correlation, the breakdown point 
is used to determine the best number of components to 
extract. 

Upon relying on M-estimators, Tukey’s biweight 
correlation predicts robust correlation. These 
M-estimators possess a function that is derivative in 
identifying assigned weights to the dataset. Hence, 
observations can be down-weighed in order to portray 
data centre impact [15]. This function of derivative is 
expressed in the following:

        (2)

...where ψ(u) is a biweight function and u represents 
the transformation of observations. 

Upon |u| being sufficiently massive, ψ(u) is reduced 
to a value of zero. Breakdown point is essential to  
be measured in determining resistance towards  
outlying M-estimator data values. Breakdown point 
refers to the smallest contamination fraction that 
could yield inaccurate outcome [16]. Upon comparing  
several breakdown points (0.0, 0.2, 0.4, & 0.5) with 
Tukey’s biweight, breakdown point 0.4 emerged as  
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the best as it resulted in more efficient and accurate 
yields [18].

The biweight correlation was yielded after 
determining location estimate, T~, and later, shape 
estimate, S~ . The (i,j)th element of S~ , such as s~ ij, denotes 
the covariance resistant estimate for dual vectors; Xi  
and Xj. The following determines biweight correlation 
for the dual vectors:

                            (3)

and

    (4)

 (5)

...where Tn
(k+1) refers to vector location, whereas Sn

(k+1)  
represents shape matrix, for instance k = 0,1,2,... In 
K-means cluster analysis, the proposed method enhanced 
partition of cluster, which had better resistance against 
values that are outlaid, in comparison to conventional 
PCA (Person correlation).

Breakdown point is one of the important aspects 
in M-estimator for resistance to outlying data values. 
There are two types of breakdown points: replacement 
breakdown and additive breakdown. The replacement 
breakdown executes when at least one of the original 
data points have been replaced with an arbitrary value 
to determine the performance of the estimator. The 

additive breakdown would show the performance of the 
estimator when random data are added to the original 
data set. In this study, we are concerned with the 
replacement breakdown which is the smallest fraction 
of a data set that one could replace with outlier values 
in the data set under any circumstances to take the 
estimator over all bounds [19]. The breakdown point 
for Tukey’s biweight correlation can be adjusted over a 
range of values where it is not identical as the breakdown 
point for sample mean which is 0 and the breakdown 
point for median which is close to 1/2. Adjustments 
of the breakdown point will have effect in determining 
the number of components to obtain in PCA method. 
Thus, in this study, we tested the performance of the 
biweight correlation under a variety of different point 
change in order to determine the best number of 
components to extract in PCA to identify torrential 
rainfall pattern. Fig. 2. depicts the nine steps of 
proposed approached was applied to daily torrential 
rainfall data set in identifying rainfall patterns in 
Peninsular Malaysia.

Simulation of Robust PCA

In determining the effectiveness of the proposed 
PCA, a comparison was made between conventional 
and proposed PCA approaches using simulated data 
matrices that reflected real multivariate data of heavy 
rainfall within the context of Peninsular Malaysia. Data 
distribution for tropical rainfall were skewed towards 
right, wherein heavy rainfall modeling may employed 
these features. The multivariate rainfall data were 
tested using three techniques, namely Generalized 
Pareto distribution (GPD), log-normal, and gamma, 

Fig 2. Nine steps of proposed approach was applied on daily torrential rainfall in Peninsular Malaysia.
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which have been vastly employed for analyses of 
rainfall data [20-22]. Estimation of parameters for the 
selected probability distributions had been based on 
statistical summary of real data. As a result, GPD had  
best fit the dataset after a number of distribution graph 
evaluations and goodness of fit assessments involving 
Anderson Darling and Chi-square tests. As GPD was 
exceptional at significance level, the null hypothesis is 
not rejected (GPD gives accurate statistical model).

The simulations had been performed upon samples 
with distributions of GDP using parameters; shape  
(ξ = 0.2), location (μ = 104.8), and scale (σ = 54.7), which 
were retrieved from the 33-year real heavy rainfall data. 
This led to the development of n × p matrix to denote 
15 rainfall stations and 250 torrential rainfall days. 
Two settings were applied to vary the simulation test. 
First, after assessing the data variations, 60 mm/day 
was selected as the threshold in this study. Second, a 
breakdown point of 0.4 was selected for extraction of 
significant components in PCA.

Every generated dataset was tested using Pearson-
based PCA and the proposed PCA. The outcomes 
retrieved from both PCA methods were compared in 
terms of cluster partition generation of imbalanced 
cluster rainfall patterns. Fig. 3. illustrated clearly the 
simulation procedures of proposed PCA approach in 
this study. 

Evaluating Performance of Robust PCA

This study is particularly interested in using the 
results on number of cluster pattern to obtain and 
determine the appropriate breakdown point to evaluate 
the performance of the proposed Robust PCA based 
Tukey’s biweght correlation. In order to reduce the 

random effect on the results, 20 simulated data were 
performed on each of the different settings described in 
Section 3.4.

As a result, for each data set mk
(1),...., mk

(20) number 
of components were obtained to be extracted based 
on 70% cumulative percentage at different range 
of breakdown points as well the number of clusters 
based on k-means. Then, the average number of 
cluster and components produced by the simulated 
data are compared. Performances displayed by the 
two approaches were examined by looking into 
clustering quality yielded from validity indices, 
namely Silhouette, Davies-Bouldin, and Rand Indices. 
Sufficient component and varied number of clusters 
obtained are generally favored. This is because such 
results are more interesting from hydrologists’ point of 
view in identifying different clusters of rainfall patterns 
in characterizing different climate phenomenon.

In addition, the possible extent of the proposed 
method was investigated in practical applications on 
torrential rainfall data in Peninsular Malaysia. The 
effect of the number of components were observed and 
clusters produced by the recommended breakdown point 
from the simulated results on robust PCA based Tukey’s 
biweight correlation. Fig. 4. depicted the process of 
evaluation performance of Robust PCA. 

Results and Discussion

Performances between the conventional and 
proposed PCA approaches were compared by 
employing simulated data. As tabulated in Table 1, 
average components were retrieved by employing the 
proposed PCA using 20 simulated data. As a result, the 

Fig 3. Simulation procedures of Robust PCA based on Tukey’s biweight correlation.
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breakdown point had an impact on component number 
extraction for this proposed method. Table 1 shows that 
breakdown point with higher value (r = 0.8) extracted 
fewer essential components, while a breakdown 
point of 0.4 led to a good balance for extraction of 12 
significant components. It is noteworthy to highlight 
that extracting plenty of components from hydrological 
data is undesired as it portrays insignificant spatial 
scale or low-frequency variations [23]. This emphasizes 
the importance of selecting the most viable breakdown 
point for the proposed PCA.

Tables 2 and 3 tabulate the average clusters and 
components retrieved from both conventional and 

proposed PCA upon increasing 60% to 80% of the 
cumulative percentage of variation. Both components 
and clusters (up to two decimal points) were retrieved 
from 20 simulated data. Variations displayed by the 
simulated data for every cluster, components, and 
cumulative percentage of variation had been small and 
ranged at 0.44-0.94.

The differences between the two PCA approaches 
for the average number of components at every 
cumulative percentage of variations level are 
tabulated in Table 2. It appears that proposed PCA 
(Tukey’s biweight correlation) requires less number 
of components to extract in order to achieve at least  
70% of cumulative percentage of variation compared  
to conventional PCA. In an instance, 11.55≈12 
components were extracted by the proposed PCA 
approach, while 61.50≈62 components for the 
conventional PCA at 70% cumulative percentage of 
variation. The presence of plenty of components when 
determining rainfall patterns is undesired as it suggests 
excessive outliers. 

As for partition of clusters, the proposed PCA 
appeared to be more sensitive to cluster number in 
light of retained components, in comparison to the 
conventional PCA (see Table 3). The conventional PCA 
attained stability at two clusters at any cumulative 

Fig 4. Evaluation performance of PCA based on Tukey’s 
biweight correlation.

Table 1. Average number of components based on 70% 
cumulative percentage of variance based on breakdown point 
values.

Breakdown Point, r Number of Components

0.2 9

0.4 12

0.6 6

0.8 3

Table 2. Average number of components yielded by both PCA 
methods using 20 simulated data.

Cumulative
percentage (%)

Number of components

Tukey’s biweight Pearson

Mean Standard 
deviation Mean Standard 

deviation

60 2.25 0.44 45.40 0.82

65 5.55 0.76 54.05 0.89

70 11.55 0.94 61.50 0.83

75 19.80 0.89 71.55 0.89

80 28.75 0.92 82.50 0.69

Table 3. Average number of clusters yielded by both PCA 
methods using 20 simulated data.

Cumulative 
percentage (%)

Number of cluster, K

Tukey’s biweight Pearson

Mean Standard 
deviation Mean Standard 

deviation

60 9.50 0.69 2.40 0.60

65 5.10 0.85 2.40 0.50

70 8.40 0.88 2.35 0.49

75 11.50 0.94 2.25 0.55

80 2.40 0.50 2.35 0.59
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percentage of variation. Two clusters clearly is 
inappropriate as it mask the true structure of the data 
[24]. Nonetheless, it is sensible to identify more than 
two cluster partitions for detection and description 
for pattern of rainfall. Thus, conventional PCA is 
unsuitable to use in identifying rainfall patterns 
especially those countries which have similar climates 
to that of Malaysia.

In the next analysis, both PCA approaches were 
assessed using real heavy rainfall dataset. Findings 
presented in Table 4 were similar to those tabulated in 
Tables 2 and 3 for simulated data based on cumulative 
percentage of variance retained and the number of 
clusters obtained. Based on Table 4, the proposed 
PCA method required fewer components than the 
conventional PCA had needed for varying cumulative 
percentages of variation. The conventional PCA, as 
given in Table 4, only generated two clusters at any 
cumulative percentage of variation. The findings 
signify certain influential observations from the data. 
Nevertheless, the proposed PCA displayed a range of 
patterns for the cluster number generated at varying 
cumulative percentages of variation. This is ascribed to 
the clustering outcomes sensitivity towards component 
number yielded, wherein the number of components to 
be retained must be determined accordingly. According 
to [25], variation among clusters should indicate the 
path of a principal component, at least.

Serving as guideline, the higher values displayed by 
Rand and Silhouette indices, whereas the lower value by 
Davies-Bouldin index, reflect exceptional cluster quality. 
Table 5 presents the indices of average validity that 
determined clustering outcomes quality based on the 
20 simulated data retrieved from both PCA approaches. 
The simulated data variation for every validity index 
had been small and ranged at 0.03-0.44. The proposed 
PCA resulted in better clustering outcomes for  
the three indices, in comparison to the Pearson-based 
PCA. This portrays that the proposed PCA is indeed 
a viably robust technique that can be applied for 
hydrology studies, particularly for torrential rainfall 
data analysis. The proposed PCA method exhibited 
substantial enhancement for partition of cluster, when 

compared to Pearson-based PCA, so as to hinder 
identifying imbalance and inaccurate clusters in rainfall 
analysis.

The main features of the clustering result are 
discussed to verify the distinction between the clusters 
with respect to their significant locations and period 
of monsoon occurrence for the torrential rainfall 
patterns (RP) based on the recommended settings in  
the previous outcome. In defining the spatial 
characteristics of torrential rainfall pattern in Peninsular 
Malaysia, ten clusters are obtained. Fig. 5a) until Fig. 
5j) show that the daily rainfall composites for the RP 
1 until RP 10 obtained in the classification of torrential 
events in the Northern and Eastern region in Peninsular 
Malaysia. These clusters are mapped out using ArcGIS 
software. Note that the torrential rainfall maxima 
locations could be clearly identified in a dark scale from 
the maps.

Fig. 5a) and Fig. 5b) illustrated that RP 1 and  
RP 2 exhibits moderate rainfall in the whole region in 
Peninsular Malaysia, with a general increase for most 
of the highland uplands, such as Bukit Bendera (Pulau 
Pinang). The maximum torrential rainfall for RP 1 
occurs in the Pintu Air Bagan Air Itam (Pulau Pinang) 
and RP 2 in Bukit Bendera (Pulau Pinang), but the main 
feature of this particular pattern is the wide distribution 
of the torrential rainfall areas, which comprise the 
entire region.The majority of the days associated with 
these patterns occurred between November and March 
during the northeast monsoon with 63.5% (RP 1) and 
68.2% (RP 2) of torrential rainfall. Consequently, 
the southwest monsoon recorded 20.8% (RP 1) and 
17.6% (RP 2) of torrential rainfall between May and 
September. With 15.7% (RP1) and 14.1% (RP 2), the 
lowest case was the inter monsoon, occurring in April 
and October. 

Fig. 5c) shows that RP 3 represents heavy rainfall 
over the east region with maximum torrential rainfall 
in Kota Bahru (Kelantan).  In this pattern, the intensity 
of the torrential rainfall decreases from east to the 
southwest region. Torrential rainfall occurs mostly 
in Kelantan due to strong influence by the northeast 
monsoon and occurrence of sea breeze. Furthermore, 
Kota Bahru (Kelantan) is located near the coast. 
Therefore, this exposes the region to more rainfall 
during that period. The highest percentage of days 

Table 4. Number of components retained in PCA and number of 
clusters yielded based on two PCA methods using real dataset.

Cumulative 
percentage (%)

Number of
components Number of cluster, K

Tukey’s 
biweight Pearson Tukey’s 

biweight Pearson

60 11 12 12 2

65 13 14 12 2

70 15 19 10 2

75 22 26 6 2

80 28 35 2 2

Table 5. Indices that determined the clustering outcomes quality 
based on 20 simulated data.

Correlation
Rand
Index

Silhouette
Index

Davies-Bouldin 
Index

Mean SD Mean SD Mean SD

Tukey’s 
biweight 0.67 0.12 0.30 0.06 3.40 0.44

Pearson 0.43 0.06 0.06 0.03 5.78 0.30

*SD denotes standard deviation.
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associated with this pattern corresponds to the northeast 
monsoon with 66.7% of torrential days over 33 years, 
9.4% of torrential rainfall in the inter monsoon seasons 
and 23.9% of torrential rainfall days occurred in the 
southwest monsoon season. 

RP 4, RP 5, RP 6, RP 7 and RP 8 in Fig. 5d)  
until Fig. 5h) are characterized by heavy torrential 
and intense rainfall occurring in the Eastern region. 
All the patterns are located in Terengganu at different 
areas where RP 4 shows that the region receiving 
higher rainfall is in Dungun, RP 5 indicates that heavy 
rainfall occurs in Kemasek, RP 6 identifies Kemaman 
as the maximum torrential rainfall area, RP 7 identifies 
Kampung Jabi as the area with maximum torrential 
rainfall, and heavy torrential rainfall is shown to 
occur in Kampung Menerong in RP 8. Distribution 
of rainfall patterns for each group is significantly 
different due to different altitudes where the rainfalls 
are observed. Northwestern region received less rainfall 
because Titiwangsa Range blocks the moisture bearing 
clouds, that which possibly affects most of the rainfall 
stations along the western part of Peninsular Malaysia. 
Meanwhile, the Eastern part in Peninsular Malaysia is 
considered as wettest area due to the strong influenced 
by Northeast monsoon that bring heavy rainfall to the 

region in the period of November until March.  The 
days included in all rainfall patterns in this study fall 
mostly in Northeast monsoon with almost the same 
percentage of the total cases of torrential rainfall over 
33 years, 67%. 

Fig. 5i) represents substantial rainfalls with 
maximums in Endau, Mersing where the topography 
is defined as lowland area. Naturally, water of the 
rainfall will flow from high to low area. Hence, when 
the northeast monsoon brings heavy rainfall to that 
area, this makes the location receive heavy rainfall. 
Furthermore, without ranges or mountains, the region 
is more likely to encounter rainfall. Due to the location 
concentrated close to the coast, the occurrence of sea 
breeze is also one of the major factors that cause this 
region to receive maximum rainfall. It can be seen 
clearly from Fig. 5i) , the pattern exhibits a gradual 
decrease from eastern to northern region. As in the 
other groups, the days included in this cluster consisted 
mostly of northeast monsoon with 62.1% of the 
total number of torrential rainfall cases. Meanwhile,  
Fig. 5j) shows that torrential rainfall of Kuantan 
(Pahang) is concentrated to urban area where it is 
characterized by higher population density and vast 
human features in comparison to areas surrounding it. 

Fig. 5 Daily rainfall composites for the RP 1 until RP 10 obtained in the classification of torrential events in the Northern and Eastern 
region in Peninsular Malaysia.
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Normally, plants especially largest trees in urban area 
are difficult to find as urban areas undergo continuous 
built up of urban development that is within a labor 
market. Therefore, when northeast monsoon brings 
heavy rainfall in that region, it will directly receive 
heavy rainfall without any restriction from the largest 
trees. The region recorded higher torrential rainfall 
with 66.1% of these events occurring in the period of 
November until March.

As seen in Table 6, RP 7 pattern is significantly 
more frequent then the remainder RPs. This followed 
by Kampung Menerong with RP 8. The least RPs is 
RP 1 and RP 2 that received less torrential rainfall and 
both of these patterns are located in northern region. 
From Table 7, it can be seen clearly that northeast 

monsoon was recorded highest frequency of percentage 
distribution of torrential rainfall occurred in each 
rainfall patterns.  

Fig. 6 illustrated that an accentuated maximum is 
observed in this torrential rainfall during northeast 
season (November to March). During this period, the 
winds over the east coast states of Peninsular Malaysia 
may reach 30 knots with strong surges of cold air from 
the north [26]. This is the most substantial monsoon 
for all RPs. Inter monsoon season loses its relative 
importance in this study as torrential events are rarely 
observed during April and October.

Conclusions

This study proposes a PCA based on Tukey’s 
biweight correlation for identifying patterns of 
spatial heavy rainfall across Peninsular Malaysia. 
This proposed technique presents an alternative 
correlation matrix that addresses issues related to non-
Gaussian distributed data, especially in light of skewed 
hydrological data. More substantial improvement was 
noted for partition of clusters by the proposed PCA 
method than the Pearson-based PCA, so as to prevent 
yielding imbalance and misleading clusters within 
space with high dimensionality. Besides, quality of 
the clustering results was determined based on three 
validity indices. The proposed PCA method was 
backed by simulation outcomes, which displayed 
more substantial improvement for partition of cluster 
than the Pearson-based PCA did to determine the 
pattern of special heavy rainfall across Peninsular 
Malaysia. Comparing the ten maps presented, each of 
the patterns tends to highlight distinct locations and 
their areas of affected by torrential rainfall do not 
overlap exceedingly. It is quite evident that, in general 
overview, Terengganu is the location most affected by 
torrential rainfall events. Six of the ten rainfall patterns 
are indicated that the torrential rainfall patterns during 
the Northeast monsoon experiencing the heaviest rain 
in the Eastern region of the Peninsula. RP 7 is located 

Rainfall 
Pattern (RP)

SW 
Monsoon (%)

INTER 
Monsoon 

(%)

NE 
Monsoon 

(%)

RP 1 20.8 15.7 63.5

RP 2 17.7 14.1 68.2

RP 3 23.9 9.4 66.7

RP 4 19.3 13.0 67.7

RP 5 20.3 14.1 65.7

RP 6 20.7 11.5 67.8

RP 7 18.3 15.2 66.6

RP 8 20.7 11.3 68.1

RP 9 24.5 13.3 62.1

RP 10 19.7 14.2 66.1

Fig. 6. Monsoons distribution for the ten rainfall patterns of 
torrential daily rainfall.

Table 6. Summary of the ten rainfall pattern groups obtained for 
daily torrential rainfall.

Rainfall 
Pattern Region Location Days 

Included

RP 1
Northern

Pintu Air Bagan, Air 
Itam 17

RP 2 Bukit Bendera 17
RP 3

Eastern 

Kota Bahru 18
RP 4 Dungun 19

RP 5 Kemasek 27

RP 6 Kemaman 29

RP 7 Kampung Jabi 41
RP 8 Kampung Menerong 32
RP 9 Endau 28
RP 10 Kuantan 22

250

Table 7. Percentage frequency distribution of torrential rainfall 
days over 33 years according to monsoon occurred for ten 
rainfall patterns.
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in Kg. Jabi (Terengganu) received maximum day of 
torrential rainfall and it is interesting to note that this 
rainfall pattern is the most frequent one.
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